Scan Definition (p.scans.scan_00)#
ScanModel#
- ScanModel(Param)#
default =
Param({})
- ScanModel.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- ScanModel.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- ScanModel.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- ScanModel.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- ScanModel.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- ScanModel.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- ScanModel.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- ScanModel.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
BlockScanModel#
- BlockScanModel(Param)#
default =
Param({})
- BlockScanModel.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- BlockScanModel.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- BlockScanModel.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- BlockScanModel.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- BlockScanModel.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- BlockScanModel.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- BlockScanModel.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- BlockScanModel.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
Vanilla#
- Vanilla(Param)#
default =
Param({})
- Vanilla.name(str)#
default =
'Vanilla'
- Vanilla.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- Vanilla.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- Vanilla.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- Vanilla.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- Vanilla.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- Vanilla.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- Vanilla.illumination.size(float)#
Initial probe size
The probe is initialized as a flat circle.
default =
None
- Vanilla.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- Vanilla.sample.fill(float, complex)#
Initial sample value
The sample is initialized with this value everywhere.
default =
1
- Vanilla.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
BlockVanilla#
- BlockVanilla(Param)#
default =
Param({})
- BlockVanilla.name(str)#
default =
'Vanilla'
- BlockVanilla.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- BlockVanilla.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- BlockVanilla.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- BlockVanilla.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- BlockVanilla.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- BlockVanilla.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- BlockVanilla.illumination.size(float)#
Initial probe size
The probe is initialized as a flat circle.
default =
None
- BlockVanilla.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- BlockVanilla.sample.fill(float, complex)#
Initial sample value
The sample is initialized with this value everywhere.
default =
1
- BlockVanilla.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
Full#
- Full(Param)#
default =
Param({})
- Full.name(str)#
default =
'Full'
- Full.coherence(Param)#
Coherence parameters
default =
Param({}) (>0.0)
- Full.coherence.num_probe_modes(int)#
Number of probe modes
default =
1 (>0)
- Full.coherence.num_object_modes(int)#
Number of object modes
default =
1 (>0)
- Full.coherence.energies(list)#
?
?
default =
[1.0]
- Full.coherence.spectrum(list)#
Amplitude of relative energy bins if the probe modes have a different energy
default =
[1.0] (>0.0)
- Full.coherence.object_dispersion(str)#
Energy dispersive response of the object
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- Full.coherence.probe_dispersion(str)#
Energy dispersive response of the probe
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- Full.resolution(NoneType, float)#
Will force the reconstruction to adapt to the given resolution, this might lead to cropping/padding in diffraction space which could reduce performance.
Half-period resolution given in [m]
default =
None (>0.0)
- Full.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- Full.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- Full.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- Full.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- Full.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- Full.illumination(Param, str)#
Illumination parameters
default =
Param({})
- Full.illumination.aperture(Param)#
Beam aperture parameters
default =
Param({})
- Full.illumination.aperture.rotate(float)#
Rotate aperture by this value
default =
0.0
- Full.illumination.aperture.central_stop(float)#
size of central stop as a fraction of aperture.size
If not None: places a central beam stop in aperture. The value given here is the fraction of the beam stop compared to size
default =
None (>0.0, <1.0)
- Full.illumination.aperture.diffuser(tuple)#
Noise in the transparen part of the aperture
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- Full.illumination.aperture.edge(float)#
Edge width of aperture (in pixels!)
default =
2.0
- Full.illumination.aperture.form(NoneType, str)#
One of None, ‘rect’ or ‘circ’
One of: -
None: no aperture, this may be useful for nearfield -'rect': rectangular aperture -'circ': circular aperturedefault =
'circ'
- Full.illumination.aperture.offset(float, tuple, list)#
Offset between center of aperture and optical axes
May also be a tuple (vertical,horizontal) for size in case of an asymmetric offset
default =
0.0
- Full.illumination.aperture.size(float, tuple, list)#
Aperture width or diameter
May also be a tuple (vertical,horizontal) in case of an asymmetric aperture
default =
None (>0.0)
- Full.illumination.diversity(Param, NoneType)#
Probe mode(s) diversity parameters
Can be
Nonei.e. no diversitydefault =
Param({})
- Full.illumination.diversity.noise(tuple, list)#
Noise in each non-primary mode of the illumination.
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
(0.5, 1.0)
- Full.illumination.diversity.power(tuple, float, list)#
Power of modes relative to main mode (zero-layer)
default =
0.1 (>0.0, <1.0)
- Full.illumination.diversity.shift(float)#
Lateral shift of modes relative to main mode
[not implemented]
default =
None
- Full.illumination.model(str, ndarray)#
Type of illumination model
One of: -
None: model initialitziation defaults to flat array filled with the specified number of photons -'recon': load model from previous reconstruction, see recon Parameters -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal image resource strings - <template> : one of the templates inillumination moduleIn script, you may pass a numpy.ndarray here directly as the model. It is considered as incoming wavefront and will be propagated according to propagation with an optional aperture applied before.
default =
None
- Full.illumination.photons(int, float, NoneType)#
Number of photons in the incident illumination
A value specified here will take precedence over calculated statistics from the loaded data.
default =
None (>0)
- Full.illumination.propagation(Param)#
Parameters for propagation after aperture plane
Propagation to focus takes precedence to parallel propagation if foccused is not
Nonedefault =
Param({})
- Full.illumination.propagation.antialiasing(float)#
Antialiasing factor
Antialiasing factor used when generating the probe. (numbers larger than 2 or 3 are memory hungry) [Untested]
default =
1
- Full.illumination.propagation.focussed(NoneType, float)#
Propagation distance from aperture to focus
If
Noneor0: No focus propagationdefault =
None
- Full.illumination.propagation.parallel(NoneType, float)#
Parallel propagation distance
If
Noneor0: No parallel propagationdefault =
None
- Full.illumination.propagation.spot_size(NoneType, float)#
Focal spot diameter
If not
None, this parameter is used to generate the appropriate aperture size instead ofsizedefault =
None (>0.0)
- Full.illumination.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- Full.illumination.recon.label(NoneType, str)#
Scan label of diffraction that is to be used for probe estimate
If
None, own scan label is useddefault =
None
- Full.illumination.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- Full.sample(Param, str)#
default =
Param({})
- Full.sample.model(str, ndarray)#
Type of initial object model
One of: -
None: model initialitziation defaults to flat array filled fill -'recon': load model from STXM analysis of diffraction data -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal model resource strings - <template> : one of the templates in sample module In script, you may pass a numpy.array here directly as the model. This array will be processed according to process in order to simulate a sample from e.g. a thickness profile.default =
None
- Full.sample.fill(float, complex)#
Default fill value
default =
1
- Full.sample.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- Full.sample.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- Full.sample.stxm(Param)#
STXM analysis parameters
default =
Param({})
- Full.sample.stxm.label(str)#
Scan label of diffraction that is to be used for probe estimate
None, own scan label is useddefault =
None
- Full.sample.process(Param, NoneType)#
Model processing parameters
Can be
None, i.e. no processingdefault =
Param({})
- Full.sample.process.offset(tuple, list)#
Offset between center of object array and scan pattern
default =
(0, 0) (>0.0)
- Full.sample.process.zoom(list, tuple, float)#
Zoom value for object simulation.
If
None, leave the array untouched. Otherwise the modeled or loaded image will be resized usingzoom().default =
None (>0.0)
- Full.sample.process.formula(str)#
Chemical formula
A Formula compatible with a cxro database query,e.g.
'Au'or'NaCl'or'H2O'default =
None
- Full.sample.process.density(float)#
Density in [g/ccm]
Only used if formula is not None
default =
1
- Full.sample.process.thickness(float)#
Maximum thickness of sample
If
None, the absolute values of loaded source array will be useddefault =
1e-06
- Full.sample.process.ref_index(list, tuple)#
Assigned refractive index, tuple of format (real, complex)
If
None, treat source array as projection of refractive index a+bj for (a, b). If a refractive index is provided the array’s absolute value will be used to scale the refractive index.default =
(0.5, 0.0) (>0.0)
- Full.sample.process.smoothing(int)#
Smoothing scale
Smooth the projection with gaussian kernel of width given by smoothing_mfs
default =
2 (>0)
- Full.sample.diversity(Param)#
Probe mode(s) diversity parameters
Can be
Nonei.e. no diversitydefault =
Param({})
- Full.sample.diversity.noise(tuple)#
Noise in the generated modes of the illumination
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- Full.sample.diversity.power(tuple, float)#
Power of modes relative to main mode (zero-layer)
default =
0.1
- Full.sample.diversity.shift(float)#
Lateral shift of modes relative to main mode
[not implemented]
default =
None
- Full.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
BlockFull#
- BlockFull(Param)#
default =
Param({})
- BlockFull.name(str)#
default =
'Full'
- BlockFull.coherence(Param)#
Coherence parameters
default =
Param({}) (>0.0)
- BlockFull.coherence.num_probe_modes(int)#
Number of probe modes
default =
1 (>0)
- BlockFull.coherence.num_object_modes(int)#
Number of object modes
default =
1 (>0)
- BlockFull.coherence.energies(list)#
?
?
default =
[1.0]
- BlockFull.coherence.spectrum(list)#
Amplitude of relative energy bins if the probe modes have a different energy
default =
[1.0] (>0.0)
- BlockFull.coherence.object_dispersion(str)#
Energy dispersive response of the object
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- BlockFull.coherence.probe_dispersion(str)#
Energy dispersive response of the probe
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- BlockFull.resolution(NoneType, float)#
Will force the reconstruction to adapt to the given resolution, this might lead to cropping/padding in diffraction space which could reduce performance.
Half-period resolution given in [m]
default =
None (>0.0)
- BlockFull.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- BlockFull.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- BlockFull.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- BlockFull.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- BlockFull.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- BlockFull.illumination(Param, str)#
Illumination parameters
default =
Param({})
- BlockFull.illumination.aperture(Param)#
Beam aperture parameters
default =
Param({})
- BlockFull.illumination.aperture.rotate(float)#
Rotate aperture by this value
default =
0.0
- BlockFull.illumination.aperture.central_stop(float)#
size of central stop as a fraction of aperture.size
If not None: places a central beam stop in aperture. The value given here is the fraction of the beam stop compared to size
default =
None (>0.0, <1.0)
- BlockFull.illumination.aperture.diffuser(tuple)#
Noise in the transparen part of the aperture
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- BlockFull.illumination.aperture.edge(float)#
Edge width of aperture (in pixels!)
default =
2.0
- BlockFull.illumination.aperture.form(NoneType, str)#
One of None, ‘rect’ or ‘circ’
One of: -
None: no aperture, this may be useful for nearfield -'rect': rectangular aperture -'circ': circular aperturedefault =
'circ'
- BlockFull.illumination.aperture.offset(float, tuple, list)#
Offset between center of aperture and optical axes
May also be a tuple (vertical,horizontal) for size in case of an asymmetric offset
default =
0.0
- BlockFull.illumination.aperture.size(float, tuple, list)#
Aperture width or diameter
May also be a tuple (vertical,horizontal) in case of an asymmetric aperture
default =
None (>0.0)
- BlockFull.illumination.diversity(Param, NoneType)#
Probe mode(s) diversity parameters
Can be
Nonei.e. no diversitydefault =
Param({})
- BlockFull.illumination.diversity.noise(tuple, list)#
Noise in each non-primary mode of the illumination.
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
(0.5, 1.0)
- BlockFull.illumination.diversity.power(tuple, float, list)#
Power of modes relative to main mode (zero-layer)
default =
0.1 (>0.0, <1.0)
- BlockFull.illumination.diversity.shift(float)#
Lateral shift of modes relative to main mode
[not implemented]
default =
None
- BlockFull.illumination.model(str, ndarray)#
Type of illumination model
One of: -
None: model initialitziation defaults to flat array filled with the specified number of photons -'recon': load model from previous reconstruction, see recon Parameters -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal image resource strings - <template> : one of the templates inillumination moduleIn script, you may pass a numpy.ndarray here directly as the model. It is considered as incoming wavefront and will be propagated according to propagation with an optional aperture applied before.
default =
None
- BlockFull.illumination.photons(int, float, NoneType)#
Number of photons in the incident illumination
A value specified here will take precedence over calculated statistics from the loaded data.
default =
None (>0)
- BlockFull.illumination.propagation(Param)#
Parameters for propagation after aperture plane
Propagation to focus takes precedence to parallel propagation if foccused is not
Nonedefault =
Param({})
- BlockFull.illumination.propagation.antialiasing(float)#
Antialiasing factor
Antialiasing factor used when generating the probe. (numbers larger than 2 or 3 are memory hungry) [Untested]
default =
1
- BlockFull.illumination.propagation.focussed(NoneType, float)#
Propagation distance from aperture to focus
If
Noneor0: No focus propagationdefault =
None
- BlockFull.illumination.propagation.parallel(NoneType, float)#
Parallel propagation distance
If
Noneor0: No parallel propagationdefault =
None
- BlockFull.illumination.propagation.spot_size(NoneType, float)#
Focal spot diameter
If not
None, this parameter is used to generate the appropriate aperture size instead ofsizedefault =
None (>0.0)
- BlockFull.illumination.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- BlockFull.illumination.recon.label(NoneType, str)#
Scan label of diffraction that is to be used for probe estimate
If
None, own scan label is useddefault =
None
- BlockFull.illumination.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- BlockFull.sample(Param, str)#
default =
Param({})
- BlockFull.sample.model(str, ndarray)#
Type of initial object model
One of: -
None: model initialitziation defaults to flat array filled fill -'recon': load model from STXM analysis of diffraction data -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal model resource strings - <template> : one of the templates in sample module In script, you may pass a numpy.array here directly as the model. This array will be processed according to process in order to simulate a sample from e.g. a thickness profile.default =
None
- BlockFull.sample.fill(float, complex)#
Default fill value
default =
1
- BlockFull.sample.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- BlockFull.sample.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- BlockFull.sample.stxm(Param)#
STXM analysis parameters
default =
Param({})
- BlockFull.sample.stxm.label(str)#
Scan label of diffraction that is to be used for probe estimate
None, own scan label is useddefault =
None
- BlockFull.sample.process(Param, NoneType)#
Model processing parameters
Can be
None, i.e. no processingdefault =
Param({})
- BlockFull.sample.process.offset(tuple, list)#
Offset between center of object array and scan pattern
default =
(0, 0) (>0.0)
- BlockFull.sample.process.zoom(list, tuple, float)#
Zoom value for object simulation.
If
None, leave the array untouched. Otherwise the modeled or loaded image will be resized usingzoom().default =
None (>0.0)
- BlockFull.sample.process.formula(str)#
Chemical formula
A Formula compatible with a cxro database query,e.g.
'Au'or'NaCl'or'H2O'default =
None
- BlockFull.sample.process.density(float)#
Density in [g/ccm]
Only used if formula is not None
default =
1
- BlockFull.sample.process.thickness(float)#
Maximum thickness of sample
If
None, the absolute values of loaded source array will be useddefault =
1e-06
- BlockFull.sample.process.ref_index(list, tuple)#
Assigned refractive index, tuple of format (real, complex)
If
None, treat source array as projection of refractive index a+bj for (a, b). If a refractive index is provided the array’s absolute value will be used to scale the refractive index.default =
(0.5, 0.0) (>0.0)
- BlockFull.sample.process.smoothing(int)#
Smoothing scale
Smooth the projection with gaussian kernel of width given by smoothing_mfs
default =
2 (>0)
- BlockFull.sample.diversity(Param)#
Probe mode(s) diversity parameters
Can be
Nonei.e. no diversitydefault =
Param({})
- BlockFull.sample.diversity.noise(tuple)#
Noise in the generated modes of the illumination
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- BlockFull.sample.diversity.power(tuple, float)#
Power of modes relative to main mode (zero-layer)
default =
0.1
- BlockFull.sample.diversity.shift(float)#
Lateral shift of modes relative to main mode
[not implemented]
default =
None
- BlockFull.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
OPRModel#
- OPRModel(Param)#
default =
Param({})
- OPRModel.name(str)#
default =
'Full'
- OPRModel.coherence(Param)#
Coherence parameters
default =
Param({}) (>0.0)
- OPRModel.coherence.num_probe_modes(int)#
Number of probe modes
default =
1 (>0)
- OPRModel.coherence.num_object_modes(int)#
Number of object modes
default =
1 (>0)
- OPRModel.coherence.energies(list)#
?
?
default =
[1.0]
- OPRModel.coherence.spectrum(list)#
Amplitude of relative energy bins if the probe modes have a different energy
default =
[1.0] (>0.0)
- OPRModel.coherence.object_dispersion(str)#
Energy dispersive response of the object
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- OPRModel.coherence.probe_dispersion(str)#
Energy dispersive response of the probe
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- OPRModel.resolution(NoneType, float)#
Will force the reconstruction to adapt to the given resolution, this might lead to cropping/padding in diffraction space which could reduce performance.
Half-period resolution given in [m]
default =
None (>0.0)
- OPRModel.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- OPRModel.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- OPRModel.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- OPRModel.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- OPRModel.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- OPRModel.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- OPRModel.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- OPRModel.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
BlockOPRModel#
- BlockOPRModel(Param)#
default =
Param({})
- BlockOPRModel.name(str)#
default =
'Full'
- BlockOPRModel.coherence(Param)#
Coherence parameters
default =
Param({}) (>0.0)
- BlockOPRModel.coherence.num_probe_modes(int)#
Number of probe modes
default =
1 (>0)
- BlockOPRModel.coherence.num_object_modes(int)#
Number of object modes
default =
1 (>0)
- BlockOPRModel.coherence.energies(list)#
?
?
default =
[1.0]
- BlockOPRModel.coherence.spectrum(list)#
Amplitude of relative energy bins if the probe modes have a different energy
default =
[1.0] (>0.0)
- BlockOPRModel.coherence.object_dispersion(str)#
Energy dispersive response of the object
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- BlockOPRModel.coherence.probe_dispersion(str)#
Energy dispersive response of the probe
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- BlockOPRModel.resolution(NoneType, float)#
Will force the reconstruction to adapt to the given resolution, this might lead to cropping/padding in diffraction space which could reduce performance.
Half-period resolution given in [m]
default =
None (>0.0)
- BlockOPRModel.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- BlockOPRModel.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- BlockOPRModel.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- BlockOPRModel.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- BlockOPRModel.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- BlockOPRModel.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- BlockOPRModel.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- BlockOPRModel.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
GradFull#
- GradFull(Param)#
default =
Param({})
- GradFull.name(str)#
default =
'Full'
- GradFull.coherence(Param)#
Coherence parameters
default =
Param({}) (>0.0)
- GradFull.coherence.num_probe_modes(int)#
Number of probe modes
default =
1 (>0)
- GradFull.coherence.num_object_modes(int)#
Number of object modes
default =
1 (>0)
- GradFull.coherence.energies(list)#
?
?
default =
[1.0]
- GradFull.coherence.spectrum(list)#
Amplitude of relative energy bins if the probe modes have a different energy
default =
[1.0] (>0.0)
- GradFull.coherence.object_dispersion(str)#
Energy dispersive response of the object
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- GradFull.coherence.probe_dispersion(str)#
Energy dispersive response of the probe
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- GradFull.resolution(NoneType, float)#
Will force the reconstruction to adapt to the given resolution, this might lead to cropping/padding in diffraction space which could reduce performance.
Half-period resolution given in [m]
default =
None (>0.0)
- GradFull.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- GradFull.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- GradFull.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- GradFull.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- GradFull.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- GradFull.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- GradFull.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- GradFull.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
BlockGradFull#
- BlockGradFull(Param)#
default =
Param({})
- BlockGradFull.name(str)#
default =
'Full'
- BlockGradFull.coherence(Param)#
Coherence parameters
default =
Param({}) (>0.0)
- BlockGradFull.coherence.num_probe_modes(int)#
Number of probe modes
default =
1 (>0)
- BlockGradFull.coherence.num_object_modes(int)#
Number of object modes
default =
1 (>0)
- BlockGradFull.coherence.energies(list)#
?
?
default =
[1.0]
- BlockGradFull.coherence.spectrum(list)#
Amplitude of relative energy bins if the probe modes have a different energy
default =
[1.0] (>0.0)
- BlockGradFull.coherence.object_dispersion(str)#
Energy dispersive response of the object
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- BlockGradFull.coherence.probe_dispersion(str)#
Energy dispersive response of the probe
One of: -
Noneor'achromatic': no dispersion -'linear': linear response model -'irregular': no assumption [not implemented]default =
None
- BlockGradFull.resolution(NoneType, float)#
Will force the reconstruction to adapt to the given resolution, this might lead to cropping/padding in diffraction space which could reduce performance.
Half-period resolution given in [m]
default =
None (>0.0)
- BlockGradFull.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- BlockGradFull.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- BlockGradFull.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- BlockGradFull.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- BlockGradFull.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- BlockGradFull.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- BlockGradFull.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- BlockGradFull.resample(int, NoneType)#
Resampling fraction of the image frames w.r.t. diffraction frames
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1
Bragg3dModel#
- Bragg3dModel(Param)#
default =
Param({})
- Bragg3dModel.illumination(Param, str)#
Container for probe initialization model
default =
Param({})
- Bragg3dModel.illumination.aperture(Param)#
Beam aperture parameters
default =
Param({})
- Bragg3dModel.illumination.aperture.rotate(float)#
Rotate aperture by this value
default =
0.0
- Bragg3dModel.illumination.aperture.central_stop(float)#
size of central stop as a fraction of aperture.size
If not None: places a central beam stop in aperture. The value given here is the fraction of the beam stop compared to size
default =
None (>0.0, <1.0)
- Bragg3dModel.illumination.aperture.diffuser(tuple)#
Noise in the transparen part of the aperture
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- Bragg3dModel.illumination.aperture.edge(float)#
Edge width of aperture (in pixels!)
default =
2.0
- Bragg3dModel.illumination.aperture.form(NoneType, str)#
One of None, ‘rect’ or ‘circ’
One of: -
None: no aperture, this may be useful for nearfield -'rect': rectangular aperture -'circ': circular aperturedefault =
'circ'
- Bragg3dModel.illumination.aperture.offset(float, tuple, list)#
Offset between center of aperture and optical axes
May also be a tuple (vertical,horizontal) for size in case of an asymmetric offset
default =
0.0
- Bragg3dModel.illumination.aperture.size(float, tuple, list)#
Aperture width or diameter
May also be a tuple (vertical,horizontal) in case of an asymmetric aperture
default =
None (>0.0)
- Bragg3dModel.illumination.model(str, ndarray)#
Type of illumination model
One of: -
None: model initialitziation defaults to flat array filled with the specified number of photons -'recon': load model from previous reconstruction, see recon Parameters -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal image resource strings - <template> : one of the templates inillumination moduleIn script, you may pass a numpy.ndarray here directly as the model. It is considered as incoming wavefront and will be propagated according to propagation with an optional aperture applied before.
default =
None
- Bragg3dModel.illumination.photons(int, float, NoneType)#
Number of photons in the incident illumination
A value specified here will take precedence over calculated statistics from the loaded data.
default =
None (>0)
- Bragg3dModel.illumination.propagation(Param)#
Parameters for propagation after aperture plane
Propagation to focus takes precedence to parallel propagation if foccused is not
Nonedefault =
Param({})
- Bragg3dModel.illumination.propagation.antialiasing(float)#
Antialiasing factor
Antialiasing factor used when generating the probe. (numbers larger than 2 or 3 are memory hungry) [Untested]
default =
1
- Bragg3dModel.illumination.propagation.focussed(NoneType, float)#
Propagation distance from aperture to focus
If
Noneor0: No focus propagationdefault =
None
- Bragg3dModel.illumination.propagation.parallel(NoneType, float)#
Parallel propagation distance
If
Noneor0: No parallel propagationdefault =
None
- Bragg3dModel.illumination.propagation.spot_size(NoneType, float)#
Focal spot diameter
If not
None, this parameter is used to generate the appropriate aperture size instead ofsizedefault =
None (>0.0)
- Bragg3dModel.illumination.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- Bragg3dModel.illumination.recon.label(NoneType, str)#
Scan label of diffraction that is to be used for probe estimate
If
None, own scan label is useddefault =
None
- Bragg3dModel.illumination.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- Bragg3dModel.illumination.size(float)#
Initial probe size
The probe is initialized as a flat circle.
default =
None
- Bragg3dModel.name(str)#
default =
'Bragg3dModel'
- Bragg3dModel.tags(list)#
Comma seperated string tags describing the data input
[deprecated?]
default =
['dummy']
- Bragg3dModel.propagation(str)#
Propagation type
Either “farfield” or “nearfield”
default =
'farfield'
- Bragg3dModel.ffttype(str)#
FFT library
Choose from “numpy”, “scipy” or “fftw”
default =
'scipy'
- Bragg3dModel.data(Param)#
Link to container for data preparation
default =
scandata.PtyScan
- Bragg3dModel.data.name(str)#
Name of the PtyScan subclass to use
default =
None
- Bragg3dModel.sample(Param, str)#
Container for sample initialization model
default =
Param({})
- Bragg3dModel.sample.fill(float, complex)#
Initial sample value
The sample is initialized with this value everywhere.
default =
1
- Bragg3dModel.resample(int, NoneType)#
Diffraction resampling CURRENTLY NOT SUPPORTED FOR BRAGG CASE
A resampling of 2 means that the image frame is to be sampled (in the detector plane) twice as densely as the raw diffraction data.
default =
1