Scan Data Definition (p.scans.scan_00.data)#
PtyScan#
- PtyScan(Param)#
default =
Param({})
- PtyScan.name(str)#
default =
'PtyScan'
- PtyScan.dfile(str)#
File path where prepared data will be saved in the
ptydformat.default =
None
- PtyScan.chunk_format(str)#
Appendix to saved files if save == ‘link’
default =
'.chunk%02d'
- PtyScan.save(str)#
Saving mode
Mode to use to save data to file.
None: No saving'merge': attemts to merge data in single chunk [not implemented]'append': appends each chunk in master *.ptyd file'link': appends external links in master *.ptyd file and stores chunks separately
in the path given by the link. Links file paths are relative to master file.
default =
None
- PtyScan.auto_center(bool)#
Determine if center in data is calculated automatically
False, no automatic centeringNone, only ifcenterisNoneTrue, it will be enforced
default =
None
- PtyScan.load_parallel(str)#
Determines what will be loaded in parallel
Choose from
None,'data','common','all'default =
'data'
- PtyScan.rebin(int)#
Rebinning factor
Rebinning factor for the raw data frames.
'None'or1both mean no binningdefault =
None (>1, <32)
- PtyScan.orientation(int, tuple, list)#
Data frame orientation
Choose
Noneor0: correct orientation1: invert columns (numpy.flip_lr)2: invert rows (numpy.flip_ud)3: invert columns, invert rows4: transpose (numpy.transpose)4+i: tranpose + other operations from above
Alternatively, a 3-tuple of booleans may be provided
(do_transpose, do_flipud, do_fliplr)default =
None
- PtyScan.min_frames(int)#
Minimum number of frames loaded by each node
default =
1 (>1)
- PtyScan.positions_theory(ndarray)#
Theoretical positions for this scan
If provided, experimental positions from
PtyScansubclass will be ignored. If data preparation is called from Ptycho instance, the calculated positions from theptypy.core.xy.from_pars()dict will be inserted heredefault =
None
- PtyScan.num_frames(int)#
Maximum number of frames to be prepared
If positions_theory are provided, num_frames will be ovverriden with the number of positions available
default =
None
- PtyScan.label(str)#
The scan label
Unique string identifying the scan
default =
None
- PtyScan.experimentID(str)#
Name of the experiment
If None, a default value will be provided by the recipe. unused
default =
None
- PtyScan.version(float)#
TODO: Explain this and decide if it is a user parameter.
default =
0.1
- PtyScan.shape(int, tuple)#
Shape of the region of interest cropped from the raw data.
Cropping dimension of the diffraction frame Can be None, (dimx, dimy), or dim. In the latter case shape will be (dim, dim).
default =
256
- PtyScan.center(list, tuple, str)#
Center (pixel) of the optical axes in raw data
If
None, this parameter will be set byauto_centeror elsewheredefault =
'fftshift'
- PtyScan.psize(float, tuple)#
Detector pixel size
Dimensions of the detector pixels (in meters)
default =
0.000172 (>0.0)
- PtyScan.distance(float)#
Sample to detector distance
In meters.
default =
7.19 (>0.0)
- PtyScan.energy(float)#
Photon energy of the incident radiation in keV
default =
7.2 (>0.0)
- PtyScan.add_poisson_noise(bool)#
Decides whether the scan should have poisson noise or not
default =
False
PtydScan#
- PtydScan(Param)#
default =
Param({})
- PtydScan.name(str)#
default =
'PtydScan'
- PtydScan.dfile(str)#
Prepared data file path
If source is
Noneor'file', data will be loaded from this file and processing as well as saving is deactivated. If source is the path to a file, data will be saved to this file.default =
None
- PtydScan.chunk_format(str)#
Appendix to saved files if save == ‘link’
default =
'.chunk%02d'
- PtydScan.save(str)#
Saving mode
Mode to use to save data to file.
None: No saving'merge': attemts to merge data in single chunk [not implemented]'append': appends each chunk in master *.ptyd file'link': appends external links in master *.ptyd file and stores chunks separately
in the path given by the link. Links file paths are relative to master file.
default =
None
- PtydScan.auto_center(bool)#
Determine if center in data is calculated automatically
False, no automatic centeringNone, only ifcenterisNoneTrue, it will be enforced
default =
None
- PtydScan.load_parallel(str)#
Determines what will be loaded in parallel
Choose from
None,'data','common','all'default =
'data'
- PtydScan.rebin(int)#
Rebinning factor
Rebinning factor for the raw data frames.
'None'or1both mean no binningdefault =
None (>1, <32)
- PtydScan.orientation(int, tuple, list)#
Data frame orientation
Choose
Noneor0: correct orientation1: invert columns (numpy.flip_lr)2: invert rows (numpy.flip_ud)3: invert columns, invert rows4: transpose (numpy.transpose)4+i: tranpose + other operations from above
Alternatively, a 3-tuple of booleans may be provided
(do_transpose, do_flipud, do_fliplr)default =
None
- PtydScan.min_frames(int)#
Minimum number of frames loaded by each node
default =
1 (>1)
- PtydScan.positions_theory(ndarray)#
Theoretical positions for this scan
If provided, experimental positions from
PtyScansubclass will be ignored. If data preparation is called from Ptycho instance, the calculated positions from theptypy.core.xy.from_pars()dict will be inserted heredefault =
None
- PtydScan.num_frames(int)#
Maximum number of frames to be prepared
If positions_theory are provided, num_frames will be ovverriden with the number of positions available
default =
None
- PtydScan.label(str)#
The scan label
Unique string identifying the scan
default =
None
- PtydScan.experimentID(str)#
Name of the experiment
If None, a default value will be provided by the recipe. unused
default =
None
- PtydScan.version(float)#
TODO: Explain this and decide if it is a user parameter.
default =
0.1
- PtydScan.shape(int, tuple)#
Shape of the region of interest cropped from the raw data.
Cropping dimension of the diffraction frame Can be None, (dimx, dimy), or dim. In the latter case shape will be (dim, dim).
default =
256
- PtydScan.center(list, tuple, str)#
Center (pixel) of the optical axes in raw data
If
None, this parameter will be set byauto_centeror elsewheredefault =
'fftshift'
- PtydScan.psize(float, tuple)#
Detector pixel size
Dimensions of the detector pixels (in meters)
default =
0.000172 (>0.0)
- PtydScan.distance(float)#
Sample to detector distance
In meters.
default =
7.19 (>0.0)
- PtydScan.energy(float)#
Photon energy of the incident radiation in keV
default =
7.2 (>0.0)
- PtydScan.add_poisson_noise(bool)#
Decides whether the scan should have poisson noise or not
default =
False
- PtydScan.source(str, NoneType)#
Alternate source file path if data is meant to be reprocessed.
None for input shall be deprecated in future
default =
'file'
MoonFlowerScan#
- MoonFlowerScan(Param)#
default =
Param({})
- MoonFlowerScan.name(str)#
default =
'MoonFlowerScan'
- MoonFlowerScan.dfile(str)#
File path where prepared data will be saved in the
ptydformat.default =
None
- MoonFlowerScan.chunk_format(str)#
Appendix to saved files if save == ‘link’
default =
'.chunk%02d'
- MoonFlowerScan.save(str)#
Saving mode
Mode to use to save data to file.
None: No saving'merge': attemts to merge data in single chunk [not implemented]'append': appends each chunk in master *.ptyd file'link': appends external links in master *.ptyd file and stores chunks separately
in the path given by the link. Links file paths are relative to master file.
default =
None
- MoonFlowerScan.auto_center(bool)#
Determine if center in data is calculated automatically
False, no automatic centeringNone, only ifcenterisNoneTrue, it will be enforced
default =
None
- MoonFlowerScan.load_parallel(str)#
Determines what will be loaded in parallel
Choose from
None,'data','common','all'default =
'data'
- MoonFlowerScan.rebin(int)#
Rebinning factor
Rebinning factor for the raw data frames.
'None'or1both mean no binningdefault =
None (>1, <32)
- MoonFlowerScan.orientation(int, tuple, list)#
Data frame orientation
Choose
Noneor0: correct orientation1: invert columns (numpy.flip_lr)2: invert rows (numpy.flip_ud)3: invert columns, invert rows4: transpose (numpy.transpose)4+i: tranpose + other operations from above
Alternatively, a 3-tuple of booleans may be provided
(do_transpose, do_flipud, do_fliplr)default =
None
- MoonFlowerScan.min_frames(int)#
Minimum number of frames loaded by each node
default =
1 (>1)
- MoonFlowerScan.positions_theory(ndarray)#
Theoretical positions for this scan
If provided, experimental positions from
PtyScansubclass will be ignored. If data preparation is called from Ptycho instance, the calculated positions from theptypy.core.xy.from_pars()dict will be inserted heredefault =
None
- MoonFlowerScan.num_frames(int)#
Number of frames to simulate
default =
100
- MoonFlowerScan.label(str)#
The scan label
Unique string identifying the scan
default =
None
- MoonFlowerScan.experimentID(str)#
Name of the experiment
If None, a default value will be provided by the recipe. unused
default =
None
- MoonFlowerScan.version(float)#
TODO: Explain this and decide if it is a user parameter.
default =
0.1
- MoonFlowerScan.shape(int, tuple)#
Shape of the region of interest cropped from the raw data.
Cropping dimension of the diffraction frame Can be None, (dimx, dimy), or dim. In the latter case shape will be (dim, dim).
default =
128
- MoonFlowerScan.center(list, tuple, str)#
Center (pixel) of the optical axes in raw data
If
None, this parameter will be set byauto_centeror elsewheredefault =
'fftshift'
- MoonFlowerScan.psize(float, tuple)#
Detector pixel size
Dimensions of the detector pixels (in meters)
default =
0.000172 (>0.0)
- MoonFlowerScan.distance(float)#
Sample to detector distance
In meters.
default =
7.19 (>0.0)
- MoonFlowerScan.energy(float)#
Photon energy of the incident radiation in keV
default =
7.2 (>0.0)
- MoonFlowerScan.add_poisson_noise(bool)#
Decides whether the scan should have poisson noise or not
default =
True
- MoonFlowerScan.density(float)#
Position distance in fraction of illumination frame
default =
0.2
- MoonFlowerScan.model(str)#
The scan pattern
default =
'round'
- MoonFlowerScan.photons(float)#
Total number of photons for Poisson noise
default =
100000000.0
- MoonFlowerScan.psf(float)#
Point spread function of the detector
default =
0.0
- MoonFlowerScan.block_wait_count(int)#
Signals a WAIT to the model after this many blocks.
default =
0
QuickScan#
- QuickScan(Param)#
default =
Param({})
- QuickScan.name(str)#
default =
'MoonFlowerScan'
- QuickScan.dfile(str)#
File path where prepared data will be saved in the
ptydformat.default =
None
- QuickScan.chunk_format(str)#
Appendix to saved files if save == ‘link’
default =
'.chunk%02d'
- QuickScan.save(str)#
Saving mode
Mode to use to save data to file.
None: No saving'merge': attemts to merge data in single chunk [not implemented]'append': appends each chunk in master *.ptyd file'link': appends external links in master *.ptyd file and stores chunks separately
in the path given by the link. Links file paths are relative to master file.
default =
None
- QuickScan.auto_center(bool)#
Determine if center in data is calculated automatically
False, no automatic centeringNone, only ifcenterisNoneTrue, it will be enforced
default =
None
- QuickScan.load_parallel(str)#
Determines what will be loaded in parallel
Choose from
None,'data','common','all'default =
'data'
- QuickScan.rebin(int)#
Rebinning factor
Rebinning factor for the raw data frames.
'None'or1both mean no binningdefault =
None (>1, <32)
- QuickScan.orientation(int, tuple, list)#
Data frame orientation
Choose
Noneor0: correct orientation1: invert columns (numpy.flip_lr)2: invert rows (numpy.flip_ud)3: invert columns, invert rows4: transpose (numpy.transpose)4+i: tranpose + other operations from above
Alternatively, a 3-tuple of booleans may be provided
(do_transpose, do_flipud, do_fliplr)default =
None
- QuickScan.min_frames(int)#
Minimum number of frames loaded by each node
default =
1 (>1)
- QuickScan.positions_theory(ndarray)#
Theoretical positions for this scan
If provided, experimental positions from
PtyScansubclass will be ignored. If data preparation is called from Ptycho instance, the calculated positions from theptypy.core.xy.from_pars()dict will be inserted heredefault =
None
- QuickScan.num_frames(int)#
Number of frames to simulate
default =
100
- QuickScan.label(str)#
The scan label
Unique string identifying the scan
default =
None
- QuickScan.experimentID(str)#
Name of the experiment
If None, a default value will be provided by the recipe. unused
default =
None
- QuickScan.version(float)#
TODO: Explain this and decide if it is a user parameter.
default =
0.1
- QuickScan.shape(int, tuple)#
Shape of the region of interest cropped from the raw data.
Cropping dimension of the diffraction frame Can be None, (dimx, dimy), or dim. In the latter case shape will be (dim, dim).
default =
64
- QuickScan.center(list, tuple, str)#
Center (pixel) of the optical axes in raw data
If
None, this parameter will be set byauto_centeror elsewheredefault =
'fftshift'
- QuickScan.psize(float, tuple)#
Detector pixel size
Dimensions of the detector pixels (in meters)
default =
0.000172 (>0.0)
- QuickScan.distance(float)#
Sample to detector distance
In meters.
default =
7.19 (>0.0)
- QuickScan.energy(float)#
Photon energy of the incident radiation in keV
default =
7.2 (>0.0)
- QuickScan.add_poisson_noise(bool)#
Decides whether the scan should have poisson noise or not
default =
False
- QuickScan.density(float)#
Position distance in fraction of illumination frame
default =
0.05
SimScan#
- SimScan(Param)#
default =
Param({})
- SimScan.illumination(Param, str)#
Illumination parameters
default =
Param({})
- SimScan.illumination.aperture(Param)#
Beam aperture parameters
default =
Param({})
- SimScan.illumination.aperture.rotate(float)#
Rotate aperture by this value
default =
0.0
- SimScan.illumination.aperture.central_stop(float)#
size of central stop as a fraction of aperture.size
If not None: places a central beam stop in aperture. The value given here is the fraction of the beam stop compared to size
default =
None (>0.0, <1.0)
- SimScan.illumination.aperture.diffuser(tuple)#
Noise in the transparen part of the aperture
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- SimScan.illumination.aperture.edge(float)#
Edge width of aperture (in pixels!)
default =
2.0
- SimScan.illumination.aperture.form(NoneType, str)#
One of None, ‘rect’ or ‘circ’
One of: -
None: no aperture, this may be useful for nearfield -'rect': rectangular aperture -'circ': circular aperturedefault =
'circ'
- SimScan.illumination.aperture.offset(float, tuple, list)#
Offset between center of aperture and optical axes
May also be a tuple (vertical,horizontal) for size in case of an asymmetric offset
default =
0.0
- SimScan.illumination.aperture.size(float, tuple, list)#
Aperture width or diameter
May also be a tuple (vertical,horizontal) in case of an asymmetric aperture
default =
None (>0.0)
- SimScan.illumination.diversity(Param, NoneType)#
Probe mode(s) diversity parameters
Can be
Nonei.e. no diversitydefault =
Param({})
- SimScan.illumination.diversity.noise(tuple, list)#
Noise in each non-primary mode of the illumination.
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
(0.5, 1.0)
- SimScan.illumination.diversity.power(tuple, float, list)#
Power of modes relative to main mode (zero-layer)
default =
0.1 (>0.0, <1.0)
- SimScan.illumination.diversity.shift(float)#
Lateral shift of modes relative to main mode
[not implemented]
default =
None
- SimScan.illumination.model(str, ndarray)#
Type of illumination model
One of: -
None: model initialitziation defaults to flat array filled with the specified number of photons -'recon': load model from previous reconstruction, see recon Parameters -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal image resource strings - <template> : one of the templates inillumination moduleIn script, you may pass a numpy.ndarray here directly as the model. It is considered as incoming wavefront and will be propagated according to propagation with an optional aperture applied before.
default =
None
- SimScan.illumination.photons(int, float, NoneType)#
Number of photons in the incident illumination
A value specified here will take precedence over calculated statistics from the loaded data.
default =
None (>0)
- SimScan.illumination.propagation(Param)#
Parameters for propagation after aperture plane
Propagation to focus takes precedence to parallel propagation if foccused is not
Nonedefault =
Param({})
- SimScan.illumination.propagation.antialiasing(float)#
Antialiasing factor
Antialiasing factor used when generating the probe. (numbers larger than 2 or 3 are memory hungry) [Untested]
default =
1
- SimScan.illumination.propagation.focussed(NoneType, float)#
Propagation distance from aperture to focus
If
Noneor0: No focus propagationdefault =
None
- SimScan.illumination.propagation.parallel(NoneType, float)#
Parallel propagation distance
If
Noneor0: No parallel propagationdefault =
None
- SimScan.illumination.propagation.spot_size(NoneType, float)#
Focal spot diameter
If not
None, this parameter is used to generate the appropriate aperture size instead ofsizedefault =
None (>0.0)
- SimScan.illumination.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- SimScan.illumination.recon.label(NoneType, str)#
Scan label of diffraction that is to be used for probe estimate
If
None, own scan label is useddefault =
None
- SimScan.illumination.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- SimScan.sample(Param, str)#
default =
Param({})
- SimScan.sample.model(str, ndarray)#
Type of initial object model
One of: -
None: model initialitziation defaults to flat array filled fill -'recon': load model from STXM analysis of diffraction data -'stxm': Estimate model from autocorrelation of mean diffraction data - <resource> : one of ptypys internal model resource strings - <template> : one of the templates in sample module In script, you may pass a numpy.array here directly as the model. This array will be processed according to process in order to simulate a sample from e.g. a thickness profile.default =
None
- SimScan.sample.fill(float, complex)#
Default fill value
default =
1
- SimScan.sample.recon(Param)#
Parameters to load from previous reconstruction
default =
Param({})
- SimScan.sample.recon.rfile(str)#
Path to a
.ptyrcompatible filedefault =
'\\*.ptyr'
- SimScan.sample.stxm(Param)#
STXM analysis parameters
default =
Param({})
- SimScan.sample.stxm.label(str)#
Scan label of diffraction that is to be used for probe estimate
None, own scan label is useddefault =
None
- SimScan.sample.process(Param, NoneType)#
Model processing parameters
Can be
None, i.e. no processingdefault =
Param({})
- SimScan.sample.process.offset(tuple, list)#
Offset between center of object array and scan pattern
default =
(0, 0) (>0.0)
- SimScan.sample.process.zoom(list, tuple, float)#
Zoom value for object simulation.
If
None, leave the array untouched. Otherwise the modeled or loaded image will be resized usingzoom().default =
None (>0.0)
- SimScan.sample.process.formula(str)#
Chemical formula
A Formula compatible with a cxro database query,e.g.
'Au'or'NaCl'or'H2O'default =
None
- SimScan.sample.process.density(float)#
Density in [g/ccm]
Only used if formula is not None
default =
1
- SimScan.sample.process.thickness(float)#
Maximum thickness of sample
If
None, the absolute values of loaded source array will be useddefault =
1e-06
- SimScan.sample.process.ref_index(list, tuple)#
Assigned refractive index, tuple of format (real, complex)
If
None, treat source array as projection of refractive index a+bj for (a, b). If a refractive index is provided the array’s absolute value will be used to scale the refractive index.default =
(0.5, 0.0) (>0.0)
- SimScan.sample.process.smoothing(int)#
Smoothing scale
Smooth the projection with gaussian kernel of width given by smoothing_mfs
default =
2 (>0)
- SimScan.sample.diversity(Param)#
Probe mode(s) diversity parameters
Can be
Nonei.e. no diversitydefault =
Param({})
- SimScan.sample.diversity.noise(tuple)#
Noise in the generated modes of the illumination
Can be either: -
None: no noise -2-tuple: noise in phase (amplitude (rms), minimum feature size) -4-tuple: noise in phase & modulus (rms, mfs, rms_mod, mfs_mod)default =
None
- SimScan.sample.diversity.power(tuple, float)#
Power of modes relative to main mode (zero-layer)
default =
0.1
- SimScan.sample.diversity.shift(float)#
Lateral shift of modes relative to main mode
[not implemented]
default =
None
- SimScan.xy(Param)#
default =
Param({})
- SimScan.xy.override(ndarray)#
default =
None
- SimScan.xy.model(str)#
None, ‘round’, ‘raster’, ‘spiral’ or array-like
default =
None
- SimScan.xy.extent(float, tuple)#
default =
1.5e-05
- SimScan.xy.spacing(float)#
Step size (grid spacing)
default =
1.5e-06
- SimScan.xy.steps(int)#
default =
10
- SimScan.xy.offset(float)#
default =
0.0
- SimScan.xy.jitter(float)#
default =
None
- SimScan.xy.count(int)#
default =
None
- SimScan.name(str)#
default =
'SimScan'
- SimScan.dfile(str)#
File path where prepared data will be saved in the
ptydformat.default =
None
- SimScan.chunk_format(str)#
Appendix to saved files if save == ‘link’
default =
'.chunk%02d'
- SimScan.save(str)#
Saving mode
Mode to use to save data to file.
None: No saving'merge': attemts to merge data in single chunk [not implemented]'append': appends each chunk in master *.ptyd file'link': appends external links in master *.ptyd file and stores chunks separately
in the path given by the link. Links file paths are relative to master file.
default =
None
- SimScan.auto_center(bool)#
Determine if center in data is calculated automatically
False, no automatic centeringNone, only ifcenterisNoneTrue, it will be enforced
default =
None
- SimScan.load_parallel(str)#
Determines what will be loaded in parallel
Choose from
None,'data','common','all'default =
'data'
- SimScan.rebin(int)#
Rebinning factor
Rebinning factor for the raw data frames.
'None'or1both mean no binningdefault =
None (>1, <32)
- SimScan.orientation(int, tuple, list)#
Data frame orientation
Choose
Noneor0: correct orientation1: invert columns (numpy.flip_lr)2: invert rows (numpy.flip_ud)3: invert columns, invert rows4: transpose (numpy.transpose)4+i: tranpose + other operations from above
Alternatively, a 3-tuple of booleans may be provided
(do_transpose, do_flipud, do_fliplr)default =
None
- SimScan.min_frames(int)#
Minimum number of frames loaded by each node
default =
1 (>1)
- SimScan.positions_theory(ndarray)#
Theoretical positions for this scan
If provided, experimental positions from
PtyScansubclass will be ignored. If data preparation is called from Ptycho instance, the calculated positions from theptypy.core.xy.from_pars()dict will be inserted heredefault =
None
- SimScan.num_frames(int)#
Maximum number of frames to be prepared
If positions_theory are provided, num_frames will be ovverriden with the number of positions available
default =
None
- SimScan.label(str)#
The scan label
Unique string identifying the scan
default =
None
- SimScan.experimentID(str)#
Name of the experiment
If None, a default value will be provided by the recipe. unused
default =
None
- SimScan.version(float)#
TODO: Explain this and decide if it is a user parameter.
default =
0.1
- SimScan.shape(int, tuple)#
Shape of the region of interest cropped from the raw data.
Cropping dimension of the diffraction frame Can be None, (dimx, dimy), or dim. In the latter case shape will be (dim, dim).
default =
256
- SimScan.center(list, tuple, str)#
Center (pixel) of the optical axes in raw data
If
None, this parameter will be set byauto_centeror elsewheredefault =
'fftshift'
- SimScan.psize(float, tuple)#
Detector pixel size
Dimensions of the detector pixels (in meters)
default =
0.000172 (>0.0)
- SimScan.distance(float)#
Sample to detector distance
In meters.
default =
7.19 (>0.0)
- SimScan.energy(float)#
Photon energy of the incident radiation in keV
default =
7.2 (>0.0)
- SimScan.add_poisson_noise(bool)#
Decides whether the scan should have poisson noise or not
default =
False
- SimScan.pos_noise(float)#
Uniformly distributed noise in xy experimental positions
default =
1e-10
- SimScan.pos_scale(float, list)#
Amplifier for noise.
Will be extended to match number of positions. Maybe used to only put nois on individual points
default =
0.0
- SimScan.pos_drift(float, list)#
Drift or offset paramter
Noise independent drift. Will be extended like pos_scale.
default =
0.0
- SimScan.detector(str, Param)#
default =
Param({})
- SimScan.frame_size(float, tuple)#
Final frame size when saving
If None, no cropping/padding happens.
default =
None
- SimScan.psf(float, tuple, ndarray)#
Parameters for gaussian convolution or convolution kernel after propagation
Use it for simulating partial coherence.
default =
None
- SimScan.verbose_level(int)#
Verbose level when simulating
default =
1
- SimScan.plot(bool)#
default =
True
- SimScan.propagation(str)#
farfield or nearfield
default =
'farfield'